
 

Smart Contracts for SMEs and Large Companies 
Christian Gang Liu  

Faculty of Computer Science  

Dalhousie University 

Halifax, Canada 

Chris.Liu@dal.ca 

Peter Bodorik  

Faculty of Computer Science  

Dalhousie University 

Halifax, Canada 

Peter.Bodorik@dal.ca 

Dawn Jutla 

Sobey School of Business  

Saint Mary’s University 

Halifax, Canada 

Dawn.Jutla@gmail.com 

 

Abstract— Research on blockchains addresses multiple issues, 

with one being writing smart contracts. In our previous 

research we described methodology and a tool to generate, in 

automated fashion, smart contracts from BPMN models. The 

generated smart contracts provide support for multi-step 

transactions that facilitate repair/upgrade of smart contracts. In 

this paper we show how the approach is used to support 

collaborations via smart contracts for companies ranging from 

SMEs with little IT capabilities to companies with IT using 

blockchain smart contracts. Furthermore, we also show how the 

approach is used for certain applications to generate smart 

contracts by a BPMN modeler who does not need any 

knowledge of blockchain technology or smart contract 

development - thus we are hoping to facilitate democratization 

of smart contracts and blockchain technology. 

Keywords — Automated Generation of Smart Contracts from 

BPMN Models, Blockchain, Smart Contracts, SMEs, Trade of 

goods and services 

I. INTRODUCTION 

The publication of the Bitcoin white paper in 2008 and the 

subsequent launch of the Bitcoin blockchain in 2009 have 

catalyzed extensive interest and research into blockchain 

technology. This technology has attracted widespread 

attention from businesses, researchers, and the software 

industry due to its compelling attributes, such as trust, 

immutability, availability, and transparency. However, as 

with any emerging technology, blockchains and their 

associated smart contracts present new challenges, 

particularly in areas such as blockchain infrastructure and 

smart contract development. 

Ongoing research is actively addressing several critical 

issues, including blockchain scalability, transaction 

throughput, and the high costs associated with consensus 

algorithms. Additionally, smart contract development faces 

unique difficulties, such as limited stack space, the oracle 

problem, data privacy concerns, and cross-blockchain 

interoperability. These topics have been explored in-depth, 

with numerous comprehensive literature reviews available 

[e.g., 1-2]. 

The constraints imposed by blockchain technology 

increase the complexity of smart contract development, 

which is well documented in various literature surveys, such 

as [3, 4]. To address these difficult challenges and simplify 

smart contract development, researchers such as López-

Pintado et al. (2019) [5-6], Tran et al. (2018) [7], Mendling 

et al. (2018) [8], and Loukil et al. (2021) [9] have proposed 

using Business Process Model and Notation (BPMN) models 

that can be transformed into smart contracts. 

We also use BPMN modeling to represent the application 

requirements, but we use a different approach to transform 

BPMN models to smart contracts. Instead of transforming the 

BPMN models directly to smart contract methods, we exploit 

multi-modal modeling to represent the flow of computation 

of the business logic in a blockchain-independent manner. To 

show the proof of concept, we developed a tool, 

Transforming Automatically BPMN model into Smart 

contracts, called TABS, to generate smart contract from 

BPMN models while also supporting side-chain processing 

[10].  

In [11] we extended the TABS tool and its underlying 

concepts into a tool TABS+ that allows representing multi-

step activities of actors using nested trade transactions while 

also providing, in automated fashion, supporting mechanisms 

to enforce the transactional properties [11] of the nested 

multi-step transactions.  

Most recently, we further extended the underlying 

concepts and the tool to support upgrade/repair of smart 

contract, which is necessary (i) to repair bugs in smart 

contracts and/or (ii) to amend the smart contracts to model 

new functionalities or features in business processes as they 

continually evolve [12].  

One of our main objectives is to automate generation of 

smart contracts from BPMN models such that the 

transformation process can be managed by a BPMN modeler 

without (much) intervention of IT support with expertise in 

smart contracts of blockchains. Although our  approach has 

brought us closer to that objective, services of a software 

developer are still required to write some well-defined 

methods for the BPMN task elements.  

A. Objectives and Contributions 

We have two objectives achieving of which also form the 

paper’s contributions. Our first objective is to show that, for 

certain types of blockchain applications, our approach can 

generate smart contracts in automated fashion from BPMN 

models without assistance of a software developer. Although 

this limits the type of applications that can be supported, the 

benefit that is gained is generation and deployment of smart 

contracts directly from BPMN models that can be exploited 

by organizations without the usual support of smart-contracts 

developers.  



 

Our second objective is to show that our approach can be 

used to support generation of smart contracts from BPMN 

models under various scenarios ranging from use by SMEs to 

use by large companies with sophisticated IT infrastructure 

that also utilizes blockchains to support its internal activities 

as well as collaborations with partner organizations.  

B. Outline 

The second section provides background. The third section 

describes how we are augmenting our approach and the tool 

to support generation of smart contracts without the need of 

a software developer, albeit for a subset of BPMN models 

that satisfy certain conditions. The fourth section describes 

how our approach is suitable for use by SMEs as well as by 

large companies. The fifth section provides related work, 

while the last section provides summary and conclusions.  

II. BACKGROUND 

We overview BPMN modeling first, then the use of 
Hierarchical State Machines (HSMs) and multi-modal 
modeling in system analyses, and then our approach to 
generating smart contracts from BPMN models.  

A. Business Process Management Notation (BPMN) 

Business Process Model and Notation (BPMN), developed 

by the Object Management Group (OMG) [13-16], is a 

standard designed to be accessible to a diverse range of 

business users, including analysts, technical developers, and 

managers. The widespread practical adoption of BPMN is 

evidenced by the variety of software platforms that facilitate 

the modeling of business processes with the aim of 

automatically generating executable applications from 

BPMN models. For instance, the Camunda platform converts 

BPMN models into Java applications [17], while Oracle 

Corporation translates BPMN models into executable 

process blueprints using the Business Process Execution 

Language (BPEL) [18]. 

BPMN models are characterized by several key features, 

including flow elements that represent the computational 

flows between different BPMN components. A task within a 

BPMN model signifies computation that is executed when 

the flow reaches the task element. Other elements in BPMN 

manage the conditional branching and merging of 

computational flows, with Boolean expressions (guards) used 

to control the flow of computation. Furthermore, BPMN also 

models various events that may arise and how these events 

are caught and processed. Additionally, data elements within 

BPMN models describe the data or objects that move along 

with the computations, serving as inputs for decision-making 

in guards or computation tasks.  

B. FSMs, Hierarchical State Machines (HSMs), and Multi-

modal Modeling 

Finite State Machine (FSM) modeling has been extensively 

utilized in software design and implementation, often 

enhanced with features such as guards on FSM transitions. In 

the late 1980s, FSMs evolved into Hierarchical State 

Machines (HSMs), in which a state in an FSM can be 

represented by an FSM itself. Although HSMs do not 

increase expressiveness of FSMs, they lead to hierarchical 

FSM structures to facilitate the reuse of patterns by allowing 

states to contain nested FSMs [19].   

Girault et al. (1999) [20] explored the combination of 

HSM modeling with concurrency semantics derived from 

models like Communicating Sequential Processes [21] and 

Discrete Event systems [22]. They demonstrated that a 

system state could be represented by an HSM, where a 

specific concurrency model is applied exclusively to that 

state. This approach enables multi-modal modeling, allowing 

different hierarchical states to employ the most appropriate 

concurrency models for the concurrent activities within those 

states. We exploit multi-modal modeling to express the flow 

of computation within a BPMN model in a blockchain-

agnostic way by using DE modeling to represent concurrency 

while concurrent FSMs are used to express functionality. 

C. BPMN Model Transformation to Smart Contract 

Methods and  TABS+R Tool 

In [10], we presented a methodology for transforming BPMN 

models into smart contracts. The transformation process 

involves several key steps: 

1. Transformation to DE-HSM Model: The BPMN model 

is first transformed into a graph representation and then 

into a DE-HSM model.  

2. Analysis and multi-step trade-transaction specification: 

The model’s computation flow is analyzed to identify 

localized sub-graphs that are then used to define nested, 

multi-step trade transactions. 

3. Transformation to DE-FSM Model: The DE-HSM 

model is elaborated by recursive replacement of each 

DE-HSM model with its elaborated DE-FSM model and 

thus flattening the entire DE-HSM model into an 

interconnected network of DE-FSM (Discrete Event 

Finite State Machine) sub-models. 

4. Transformation to Smart Contracts: The interconnected 

DE-FSM models are transformed into smart contract 

code.  

It should be noted that the flow of computation in the 

smart contracts is represented by DE modeling combined 

with functionality represented by concurrent FSMs – and 

these are blockchain independent. As long as the target 

blockchain has a smart contract deployed containing the 

monitor, any smart contract generated by the transformation 

process can be deployed and executed on that target 

blockchain. The monitor smart contract provides the 

execution environment for the DE modeling and concurrent 

FSMs. In short, the monitor has a detailed view of the 

business logic flow, including the corresponding data 

flowing along with the flow of computation, wherein the 

business logic is expressed in an abstract manner, using DE 

modeling techniques and concurrent FSMs, and is thus 

blockchain independent. 



 

III. ATTESTATION FOR AUTOMATED GENERATION 

One of our objectives is to achieve generation of smart 

contracts that are blockchain agnostic. We made progress 

towards this objective by representing the collaboration logic 

in a blockchain-independent as described above. However, 

currently, the scripts for the BPMN task elements, need to be 

coded/written by a software developer in a specific computer 

language executable by the target blockchain.  

To overcome this issue of the dependence on coding of 

task elements, in this section we describe how we adapted a 

two-layer approach taken by the Plasma project, described in 

[23], to generate smart contracts without writing scripts for 

the BPMN task elements. The Plasma project approach to 

improve scalability is to use two chain layers, wherein the 

sub-servient chain performs the transaction detailed work, 

while the main chain records the certifications of the results 

of work performed by the subservient chain, such as a 

sidechain. This approach was used for scalability by the 

Ethereum public blockchain [24] in that the main Beacon 

Chain simply records coordination activities in managing the 

consensus and approvals of blocks appended to shards and in 

storing results of attestation of shard blocks.  

We utilize this approach to off-load the execution of 

scripts of the BPMN task elements to be performed off the 

main chain, while the smart contract executed on the 

mainchain simply guides the collaborations and obtains 

certifications about the results of the tasks that are executed 

off chain.  

A. Motivation for Certifications of Work of Task Elements 

The BPMN task element represents computation, within a 

swimlane (BPMN terminology) of one actor, on data flowing 

into the task element. The task uses the data flowing into the 

computation and the content of state variables to produces 

data flowing out of the computation while also updating state 

variables. For some applications, the task element examines 

the details of a document flowing in and makes decisions 

based on the data contained within that document. By having 

such computation performed by a smart contract, trust is 

achieved as all parties can examine details. However, such 

computation also causes difficulties due to amendments 

required for either repairing bugs or for new features being 

introduced, as it is likely that the required amendments would 

be within the task elements that are executed as a part of a 

smart contract. And repairing/upgrading smart contracts is 

not easy [25-27]. 

However, many applications include simpler interactions 

amongst partners/actors, interactions that consist of exchange 

of documents rather than performing computations on such 

documents. In such situations, task elements need not be 

used, and instead we use prepared interactions for certified 

exchange of documents.  

We examined sample use cases appearing in the 

literature, use cases detailing transformation of BPMN 

models into smart contracts, with examples being the 

following use cases: Simple Order [28], Supply Chain [29], 

Repair Process [30], Sell and Ship [31], Order Process in 

Health Care setting [32]. In all of them, besides transferring 

documents amongst actors, the document creation, review, or 

amendment are performed off-chain by a single actor. In fact, 

for some use cases, such as in the case of [32], data 

exchanged between the actors only consists of exchanging 

QR codes identifying documents being exchanged.  

Thus, if the task method execution can be performed off-

chain, then the code for the task script element does not need 

to be provided as long as the generation of the smart contracts 

from BPMN model facilitates certified exchange of 

documents between the on-chain and off-chain computation. 

Consequently, details of the task computation are delegated 

to the off-chain computation that only provides the smart 

contract with the results of the off-chain computation, while 

generation of smart contracts from BPMN model facilitates 

the exchange of documents.  

For exposition purposes, we are going to use a simple 

BPMN model, shown in Fig. 1, for a sale of a large product, 

such as a combine harvester. (Figures appear just before the 

References section.) The model shows that an agreement on 

the sale of the product is reached first, which is followed by 

arrangements for the transport of the product. Transport 

arrangements include finding the requirements for the 

transport of the product, such as or safety requirements in 

case of dangerous products in transport. Once the transport 

requirements are determined, the insurance and transport are 

arranged, and the product is shipped/transported. Following 

the transport, the product is received, and payments are 

completed.  

B. Certification of Exchanged Documents 

Recall that as part of BPMN modeling, the modeler is asked 

to use data association elements to describe the purpose of 

the task and describe the data/information flowing along with 

the flow of computation, and hence also flowing in and out 

of the task element. This information is also passed to the off-

chain component together with a document that is input 

(flows) into the task element. Once the task is completed, 

output from the task element is a document that is passed 

along the flow of computation.  

As is the usual practice for blockchains, a document is 

stored off-chain, while it is the digitally signed hash-code of 

the document that is stored on the blockchain, wherein the 

signed hash code is used to confirm the document 

authenticity, where the authenticity includes confirmation of 

(i) authorship and (ii) that the document has not been 

modified.  

For storage of documents, we currently utilize the 

InterPlanetary File System (IPFS) [33]. When a document is 

created, uploading it to generates a new content-addressed 

hash code identifier (CID), which is stored by the smart 

contract. This allows the on-chain components associated 

with BPMN data elements to interact with the off-chain 

document without needing to directly handle its content. 



 

For example, in Fig. 1, the first task receives a purchase 

offer document from an external source. An accepted 

purchase offer results in a sales agreement that is used in 

subsequent processing. The sales agreement is represented by 

an association data element, SalesAgr. The dotted arrow from 

RecAgr to the association data element SalesAgr signifies the 

creation of the SalesAgr by the RecAgr task. The dotted arrow 

from the SalesAgr by the GetTrReq task element signifies 

that the SalesArg is delivered for further processing to the 

GetTrReq task. 

This standard interaction model for storing documents 

off-chain is used to prevent the blockchain from being 

overburdened, while still allowing transactions to be secure 

and complex multi-step processes to be executed. 

Additionally, any update or modification to a document 

generates its new CIDs, effectively handling version control 

and verification throughout the smart contract’s lifecycle. 

Thus, for applications that include collaborations that 

involve exchange of documents, the computations associated 

with the task elements can be off-loaded to off-chain and thus 

facilitate generation of smart contracts without requiring 

scripts for the BPMN task elements. Under such 

circumstances, our approach and tool to generation of smart 

contracts from BPMN models can be automated without 

intervention of a software developer and can thus be under 

the control of a Business Analyst (BA) who develops the 

BPMN model and asks the tool (i) to transform it into smart 

contract for the target blokchain and that (ii) to deploy the 

smart contract on the target blockchain.  

In short, when the work of a task element can be executed 

off-change and the interaction between the on-chain and off-

chain components can be modeled simply by a certified 

exchange of documents, then the transformation of the 

BPMN model into a smart contract is used to support such a 

certified exchange of documents and thus avoid coding of the 

task elements. Consequently, a BPMN model can be 

transformed into a smart contract in automated fashion and 

deployed on the target blockchain under the control of the BA 

without assistance of a software developer.  

Currently, we support certified information exchange 

between the on-chain and off-chain components using HTTP 

web services. As an example, consider the communication 

between the seller company and the insurance company.  

IV. SMART CONTRACTS FOR SMES AND LARGE COMPANIES 

To show the flexibility of our approach, we are going to 

utilize the example use case, shown in Fig. 1, under two 

different scenarios, one in the context of a small SME, while 

the other one in the context of a large organization with 

sophisticated IT department.  

A. Use Case in the Context of an SME 

An SME would like to use a smart contract to ensure secure 

computation and obtaining certified documentation on the 

trade activity. A business analyst (BA), who is familiar with 

BPMN modeling, uses the TABS+R tool to create a BPMN 

model shown in Fig. 1. The BA creates the BPMN model and 

specifies that the task elements are executed off-chain, and 

then the system facilitates exchange of documents between 

the smart contract and the off-chain computation.  

For an SME, off-chain computation may simply be 

manual, by perhaps BA performing the off-chain work. For 

instance, for the GetTrReq task, the BA may contact the 

registry and find the transport requirements and store them in 

a newly created IPFS document TrRequirements. The CID of 

the document is forwarded to next step in processing. The 

transport requirements are forwarded to the GetIns and 

GetTransp task elements that can be executed concurrently 

as shown by the fork gate represented by a diamond with a 

plus in it. The BA may communicate with the insurance 

company for an insurance contract represented by the 

Insurance document that is stored on IPFS. Similarly, BA 

may negotiate the contract for the transport contract that is 

stored in the Transport document on the IPFS. Once the 

insurance and the transport contract are obtained, they are 

forwarded to the DoTransport task.  Once the product is 

delivered, the transporter creates a document, on IPFS, called 

Delivery that contains information on the delivery of the 

product. The Delivery document is forwarded to the 

RecAndFin to receive the document and finalize the trade 

activity.  

There is some initial setup required before an SME is able 

to create smart contracts from BPMN models. The SME’s 

target blockchain would need to be identified so that the 

generated smart contract can be deployed on the target 

blockchain. However, first, the smart contract containing the 

TABS+R monitor would need to be deployed on the 

blockchain. However, this is only a one-time initial overhead 

that is automated as it simply involves deploying the 

TABS+R monitor smart contract on the target blockchain. 

Currently, we provide the TABS+R monitor smart contracts 

for Hyperledger Fabric (HLF) and for blockchains based on 

Ethereum Virtual Machine (EVM).  

B. Use Case in the Context of a Large Company 

Assume now that a similar application is being developed in 

the context of a large company with sophisticated IT systems. 

The company now has two departments, one for sales and one 

for the product shipment, and uses cutting-edge technologies, 

such as blockchains for collaborations and AI for automation.  

A BPMN model that may represent the application is 

shown in Figure 2. In comparison to Fig. 1, it has significant 

differences as information is flowing across departments and 

external actors, the insurance company and the transport 

company. In BPMN actor’s activities are contained in a 

swimlane that is represented by a rectangle. Information flow 

between actors is represented by lines that cross swimlanes. 

Thus, instead of a single swimlane as shown in Fig. 1, there 

are multiple swimlanes in Fig 2. There is a swimlane for each 

of the company’s sales and shipping departments, denoted as 

SalesDep and ShipDep, respectively; a swimlane for each of 

the external actors that include transport-requirements 



 

registry (ReqRegistry), the insurance company (InsComp), 

and the transporter (Trnasp). Also represented is a buyer who 

makes an offer of purchase for the product.  

As showing the creation and exchange of documents 

tends to clutter more complex BPMN models, we do not 

show exchange explicitly when the BA indicates to the 

TABS+R tool that the interaction of the actors is in terms of 

the certified exchange of documents. Thus, although we shall 

be referring to documents that are being transferred amongst 

the different actors and their tasks, the storage of documents 

on IPFS and their access is not shown on Fig. 2, but they are 

assumed.  

Processing shown in Fig. 2 starts with the buyer making 

a purchase offer for a product. As stated above, the purchase 

offer document, as stored on the IPFS is not shown on the 

diagram, but it is assumed. The sales department reviews and 

accepts the purchase offer, which results in the sales 

agreement. For simplicity, we do not show furhter details, 

such as reviewing the purchase offer and showing actions 

taken if the the offer is not accepted by the sales department.  

Once the sales agreement, which includes the product 

description and the purchaser information, has been approved 

by the sales department, it needs to be communicated to a 

shipment department that uses its own internal processes to 

facilitate the product shipment to the purchaser.  

After the shipping department receives the sales 

agreement, it interacts with the transport-requirements 

registry to find the product transport requirements. It then 

communicates the requirements concurrently to the insurance 

company to obtain insurance, and to the transporter to arrange 

the transport contract.  

Insurance is obtained by invoking a smart contract 

method of the insurance company, while providing it with 

information on sales agreement that inludes information on 

the product to shipped and information on source, 

destination, manner of transport, etc. Obtaining a transporter 

is achieved in a similar manner by invoking a smart contract 

method of the transporter to receive requests for shipment 

quotations that responds to the request by providing the 

contract for transport of the product.  

Following this, the transporter performs the transport and 

when finished, the confirmation of delivery is provided by 

the transporter. Finally, once the product is delivered, 

payments are finalized.  

If all interactions amongst the actors can be achieved by 

certified exchange of documents, the transformation of the 

BPMN model into the methods of a smart contract(s) can be 

achieved without requiring coding of task element scripts.  

V. RELATED WORK 

Closest to our research is the work on transforming 

BPMN models to smart contracts. The Lorikeet project [7] 

employs a two-phase methodology for converting BPMN 

models into smart contracts. First, the BPMN model is 

analyzed and transformed into smart contract methods, which 

are subsequently deployed and executed on a blockchain 

platform, specifically Ethereum. An off-chain component 

handles communication with the decentralized application 

(DApp), ensuring that actors exchange messages according 

to the BPMN model. The project also supports asset control, 

including both fungible and non-fungible tokens, and 

provides a registry and management methods for assets, such 

as transfers.  

Caterpillar [5-6] adopts a different approach by focusing 

on BPMN models confined within a single pool (a BPMN 

construct) where all business processes are recorded on the 

blockchain. Its architecture consists of three layers: Web 

Portal, Off-chain Runtime, and On-chain Runtime. The On-

chain Runtime layer includes smart contracts for workflow 

control, interaction management, configuration, and process 

management, with Ethereum as the preferred blockchain 

platform. 

Loukil et al. (2021) [9] proposed CoBuP, a collaborative 

business process execution architecture on blockchain. 

Unlike other methodologies, CoBuP does not directly 

compile BPMN models into smart contracts. Instead, it 

deploys a generic smart contract that invokes predefined 

functions. CoBuP’s three-layer architecture, comprising 

Conceptual, Data, and Flow layers, transforms BPMN 

models into a JSON Workflow model that governs the 

execution of process instances, which in turn interact with 

data structures on the blockchain.  

Similar to CoBuP, Bagozi et al. [34] employ a three-layer 

approach, albeit in a simpler form. In the first layer, a 

business analyst represents the collaborative process in 

BPMN. In the second layer, a business expert annotates the 

BPMN model to identify trust-demanding objects, after 

which Abstract Smart Contracts, independent of any specific 

blockchain technology, are created. Finally, Concrete Smart 

Contracts are generated and deployed on a specific 

blockchain platform. 

VI. SUMMARY AND CONCLUSIONS 

In this paper we described how we are modifying our tool 

TABS+R to facilitate generation of smart contracts only 

under the guidance of a BA without assistance by a software 

developer assistance – albeit, only for applications that 

interact only by exchange of documents. This is achieved by 

off-loading computation, performed by the script/code of 

task elements, off-chain and by facilitating collaboration of 

actors through a certified exchange of documents. We are 

thus facilitating democratization of the blockchain smart 

contracts by reducing the need for software development 

expertise.  

Secondly, we show that generation of smart contracts 

using the TABS+R approach and its tool is flexible in that it 

can be used not only by large companies with sophisticated 

IT, but also by SMEs without IT to support software 

development.  

Although we developed the concept and supporting tool 

showing the feasibility of the approach, actual success can 

only be achieved by further experimentation and in particular 



 

development of complementary tools to achieve user 

experience that is expected in use of commercial software. 

 

Fig. 1. BPMN Model for an SME 

 

Figure 2. BPMN Model in the Context of a Large Company 

 



 

REFERENCES 

[1] D. Yang, C. Long, H. Xu, S. Peng, 2020. A Review on Scalability 
of Blockchain. In Proceedings of the 2020 The 2nd International 
Conference on Blockchain Technology (ICBCT'20). Association for 
Computing Machinery, New York, NY, USA, 1–6. 
DOI:https://doi.org/10.1145/3390566.3391665 

[2] P. J. Taylor,  T. Dargahi, Dehghantanha, R. M. Parizi, 2019. A 
Systematic Literature Review Of Blockchain Cyber Security - 
ScienceDirect. A systematic literature review of blockchain cyber 
security - ScienceDirect. 
https://www.sciencedirect.com/science/article/pii/S2352864818301
536. 

[3] S. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, A. Bani-
Hani, 2021. Blockchain smart contracts: Applications, challenges, 
and future trends. Peer Peer Netw Appl. 2021 Apr 18:1-25. doi: 
10.1007/s12083-021-01127-0. Epub ahead of print. PMID: 
33897937; PMCID: PMC8053233. 

[4] O. Levasseur, M. Iqbal, and R. Matulevičius, 2021. “Survey of 
Model-Driven Engineering Techniques for Blockchain-Based 
Applications”. PoEM’21 Forum: 14th IFIP WG 8.1 Working 
Conference on the Practice of Enterprise Modelling. 

[5] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, and A. 
Ponomarev, “CATERPILLAR: A Business Process Execution 
Engine on the Ethereum Blockchain,” Apr. 22, 2019, arXiv: 
arXiv:1808.03517. doi: 10.48550/arXiv.1808.03517. 

[6] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber, 
“Controlled flexibility in blockchain-based collaborative business 
processes,” Information Systems, vol. 104, p. 101622, Feb. 2022, 
doi: 10.1016/j.is.2020.101622. 

[7] Tran, Q. Lu, and I. Weber, “Lorikeet: A Model-Driven Engineering 
Tool for Blockchain-Based Business Process Execution and Asset 
Management,” in Proc. 2018 Int. Conf. on Business Process 
Management, 2018, pp. 1–5. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:52195200 

[8] J. Mendling et al., “Blockchains for Business Process Management 
- Challenges and Opportunities,” ACM Trans. Manage. Inf. Syst., 
vol. 9, no. 1, pp. 1–16, Mar. 2018, doi: 10.1145/3183367. 

[9] F. Loukil, K. Boukadi, M. Abed, and C. Ghedira-Guegan, 
“Decentralized collaborative business process execution using 
blockchain,” World Wide Web, vol. 24, no. 5, pp. 1645–1663, Sep. 
2021, doi: 10.1007/s11280-021-00901-7. 

[10] P. Bodorik, C. G. Liu, D. Jutla. 2022. TABS: Transforming 
Automatically BPMN Models into Smart Contracts. Blockchain: 
Research and Applications (Elsevier journal), 100115. 
https://doi.org/10.1016/j.bcra.2022.100115. 

[11] C. Liu, P. Bodorik, D. Jutla. 2024. Tabs+: Transforming 
Automatically BPMN Models To Smart Contracts with Nested 
Collaborative Transactions. ACM Distributed Ledger Technologies: 
Research and Practice (DLT) Journal. 
https://doi.org/10.1145/3654802. 

[12] C. Liu, P. Bodorik, and D. Jutla, “Automated Mechanism to Support 
Trade Transactions in Smart Contracts”. [Manuscript submitted for 
publication]. In Journal of Blockchain: Research and Applications, 
2024. [Online]. Available: 
https://blockchain.cs.dal.ca/papers/BCRAj2wRepair-wPoC.pdf 

[13] BPMN 2.0 Introduction - Flowable Open-Source Documentation. 
(n.d.). Retr. 2024/02/15 https://flowable.com/open-source/docs/. 

[14] BPMN 2.0 Symbols—A complete guide with examples. (n.d.). 
Camunda. Retr. 2024/02/15  https://camunda.com/bpmn/reference/. 

[15] Business Process Model and Notation (BPMN), Version 2.0.2. 
(n.d.). Retr. 2024/02/15 
https://www.omg.org/spec/BPMN/2.0.2/PDF. 

[16] About the Business Process Model and Notation Specification 2.0. 
(2010). Retr. 2024/02/15 
https://www.omg.org/spec/bpmn/2.0/About-BPMN. 

[17] Camunda (n.d.). Process Orchestration for end-to-end automation. 
Retr. 2024/02/15 https://camunda.com. 

[18] L. Dikmans, “Transforming BPMN into BPEL: Why and How.” 
2008. [Online]. Available: https://www.oracle.com/technical-
resources/articles/dikmans-bpm.html 

[19] M. Yannakakis, “Hierarchical State Machines,” in Proceedings of 
the International Conference IFIP on Theoretical Computer Science, 

Exploring New Frontiers of Theoretical Informatics, in TCS ’00. 
Berlin, Heidelberg: Springer-Verlag, Aug. 2000, pp. 315–330. 

[20] Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines 
with multiple concurrency models,” IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 18, 
no. 6, pp. 742–760, Jun. 1999, doi: 10.1109/43.766725. 

[21] A. R. Hoare, “Communicating sequential processes,” Commun. 
ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978, doi: 
10.1145/359576.359585. 

[22] Cassandras, “Discrete event systems : modeling and performance 
analysis,” 1993. Accessed: Jan. 03, 2023. [Online]. Available: 
https://www.semanticscholar.org/paper/Discrete-event-systems-
%3A-modeling-and-performance-
Cassandras/0e132ecc5400d9bcd9e45f482192a3f66de13475 

[23] J. Poon, “Plasma : Scalable Autonomous Smart Contracts,” 2017. 
Accessed: Jan. 01, 2023. [Online]. Available: 
https://www.semanticscholar.org/paper/Plasma-%3A-Scalable-
Autonomous-Smart-Contracts-
Poon/cbc775e301d62740bcb3b8ec361721b3edd7c879 

[24] V. Buterin, “A Next Generation Smart Contract and Decentralized 
Applications Platform.” Available: 
https://blockchainlab.com/pdf/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized_application_
platform-vitalik-buterin.pdf 

[25] M. Rodler, W. Li, G. O. Karame, and L. Davi, “{EVMPatch}: 
Timely and Automated Patching of Ethereum Smart Contracts,” 
presented at the 30th USENIX Security Symposium (USENIX 
Security 21), 2021, pp. 1289–1306. Accessed: Aug. 07, 2024. 
[Online]. Available: 
https://www.usenix.org/conference/usenixsecurity21/presentation/r
odler 

[26] Z. Li, Y. Zhou, S. Guo, and B. Xiao, “SolSaviour: A Defending 
Framework for Deployed Defective Smart Contracts,” in 
Proceedings of the 37th Annual Computer Security Applications 
Conference, in ACSAC ’21. New York, NY, USA: Association for 
Computing Machinery, Dec. 2021, pp. 748–760. doi: 
10.1145/3485832.3488015. 

[27] H. Jin, Z. Wang, M. Wen, W. Dai, Y. Zhu, and D. Zou, “Aroc: An 
Automatic Repair Framework for On-Chain Smart Contracts,” IEEE 
Transactions on Software Engineering, vol. 48, no. 11, pp. 4611–
4629, Nov. 2022, doi: 10.1109/TSE.2021.3123170.  

[28] Fleischmann, A., Schmidt, W., Stary , C. “(Re-)Justifying BPM: A 
Quest for the Interaction Turn Reviewing Subject-Oriented BPM.” 
In CBI '13: Proceedings of the 2013 IEEE 15th Conference on 
Business Informatics, pp. 228-233. DOI:10.1109/CBI.2013.40 

[29] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, J. 
Mendling, 2016. Untrusted Business Process Monitoring and 
Execution Using Blockchain. Proceedings of Business Process 
Management Conference, Rome, Italy, 2016, 329-347. 

[30] P. Klinger, L. Nguyen, and F. Bodendorf, “Upgradeability Concept 
for Collaborative Blockchain-Based Business Process Execution 
Framework,” in Blockchain – ICBC 2020, Z. Chen, L. Cui, B. 
Palanisamy, and L.-J. Zhang, Eds., Cham: Springer International 
Publishing, 2020, pp. 127–141. doi: 10.1007/978-3-030-59638-5_9. 

[31] Asgaonkar and B. Krishnamachari, “Solving the Buyer and Seller’s 
Dilemma: A Dual-Deposit Escrow Smart Contract for Provably 
Cheat-Proof Delivery and Payment for a Digital Good without a 
Trusted Mediator,” Jun. 21, 2018, arXiv: arXiv:1806.08379. doi: 
10.48550/arXiv.1806.08379. 

[32] Di Ciccio, C. et al. “Blockchain-Based Traceability of Inter-
organisational Business Processes,” In: Shishkov, B. (eds) Business 
Modeling and Software Design. BMSD 2018. Lecture Notes in 
Business Information Processing, vol 319. Springer, Cham. 
https://doi.org/10.1007/978-3-319-94214-8_4A.  

[33] J. Benet. “IPFS - Content Addressed, Versioned, P2P File System.” 
In https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-
file-system.pdf  

[34] Bagozi, D. Bianchini, V. De Antonellis, M. Garda, and M. 
Melchiori, “A Three-Layered Approach for Designing Smart 
Contracts in Collaborative Processes,” in On the Move to 
Meaningful Internet Systems: OTM 2019 Conferences, H. Panetto, 
C. Debruyne, M. Hepp, D. Lewis, C. A. Ardagna, and R. 
Meersman, Eds., Cham: Springer International Publishing, 2019, 
pp. 440–457. doi: 10.1007/978-3-030-33246-4_28.  

https://www.sciencedirect.com/science/article/pii/S2352864818301536
https://www.sciencedirect.com/science/article/pii/S2352864818301536
https://www.oracle.com/technical-resources/articles/dikmans-bpm.html
https://www.oracle.com/technical-resources/articles/dikmans-bpm.html
https://www.semanticscholar.org/paper/Discrete-event-systems-%3A-modeling-and-performance-Cassandras/0e132ecc5400d9bcd9e45f482192a3f66de13475
https://www.semanticscholar.org/paper/Discrete-event-systems-%3A-modeling-and-performance-Cassandras/0e132ecc5400d9bcd9e45f482192a3f66de13475
https://www.semanticscholar.org/paper/Discrete-event-systems-%3A-modeling-and-performance-Cassandras/0e132ecc5400d9bcd9e45f482192a3f66de13475
https://www.semanticscholar.org/paper/Plasma-%3A-Scalable-Autonomous-Smart-Contracts-Poon/cbc775e301d62740bcb3b8ec361721b3edd7c879
https://www.semanticscholar.org/paper/Plasma-%3A-Scalable-Autonomous-Smart-Contracts-Poon/cbc775e301d62740bcb3b8ec361721b3edd7c879
https://www.semanticscholar.org/paper/Plasma-%3A-Scalable-Autonomous-Smart-Contracts-Poon/cbc775e301d62740bcb3b8ec361721b3edd7c879
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

	I. Introduction
	A. Objectives and Contributions
	B. Outline

	II. Background
	A. Business Process Management Notation (BPMN)
	B. FSMs, Hierarchical State Machines (HSMs), and Multi-modal Modeling
	C. BPMN Model Transformation to Smart Contract Methods and  TABS+R Tool

	III. Attestation for Automated Generation
	A. Motivation for Certifications of Work of Task Elements
	B. Certification of Exchanged Documents

	IV. Smart Contracts for SMEs and Large Companies
	A. Use Case in the Context of an SME
	B. Use Case in the Context of a Large Company

	V. Related Work
	VI. Summary and Conclusions
	References


